CARSO - LABORATOIRE SANTÉ ENVIRONNEMENT HYGIÈNE DE LYON

Laboratoire Agréé pour les analyses d'eaux par le Ministère de la Santé

Accréditation 1-1531 PORTEE disponible sur www.cofrac.fr

Edité le : 05/09/2025

Rapport d'analyse Page 1 / 11

MAIRIE LE POET

Route Napoléon 05300 LE POET

Analyse demandée par : ARS PACA - DT 05

Code PSV: 0000000363

Les résultats et les conclusions éventuelles ne se rapportent qu'à l'échantillon soumis à l'analyse et tel qu'il a été prélevé. Le rapport comporte 11 pages.

La reproduction de ce rapport d'analyse n'est autorisée que sous la forme de fac-similé photographique intégral.

L'accréditation du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation, identifiés par le symbole #.

Les paramètres sous-traités sont identifiés par (*).

Identification dossier: LSE25-122339
Identification échantillon: LSE2508-28048-1

N° Analyse: 00146609 N° Prélèvement: 00137402

Nature: Eau de ressource superficielle

Point de Surveillance : CAPTAGE SOUS CANAL EDF

Localisation exacte: Sortie drain surverse

Dept et commune : 5 LE POET

Coordonnées GPS du point (x,y) X: 44,3075010000 Y: 5,8942588000

UGE: 0158 - ADDUCTION POET (DU)

Type d'eau : A1 - EAU SUPERFICIELLE CATEGORIE A1

Type de visite: RS Type Analyse: RS Motif du prélèvement: CS

Nom de l'exploitant : POET (MAIRIE DU)

LE VILLAGE 05300 LE POET

Nom de l'installation : CANAL EDF (SOURCESOUS LE) Type : CAP Code : 000363

Prélèvement : Prélevé le 26/08/2025 à 09h16 Réception au laboratoire le 26/08/2025 à 20h51

Prélevé et mesuré sur le terrain par CARSO LSEHL / DELVAL Antoine

Prélèvement accrédité selon FD T 90-520 et NF EN ISO 19458 pour les eaux de consommation

humaine

Les données concernant la réception, la conservation, le traitement analytique de l'échantillon et les incertitudes de mesure sont consultables au laboratoire. Pour déclarer, ou non, la conformité à la spécification, il n'a pas été tenu explicitement compte de l'incertitude associée au résultat.

Le laboratoire n'est pas responsable de la validité des informations transmises par le client qui sont antérieures à l'heure et la date de prélèvement. La référence de l'échantillon, sa nature, toute information liée à un traitement en amont du prélèvement ainsi que la date de prélèvement, si celui-ci a été réalisé par le client, sont des informations fournies par ce dernier

Date de début d'analyse le 26/08/2025 à 20h51

Paramètres analytiques		Résultats	Unités	Méthodes	Normes	LQ	Limites de qualité	Références de qualité
Mesures sur le terrain Température de l'eau Température de l'air extérieur	05RS>> 05RS>>	10.2 12.4	°C	Méthode à la sonde Méthode à la sonde	Méthode interne M_EZ008 v3 Méthode interne	0 -10		

.../...

Rapport d'analyse Page 2 / 11

Edité le : 05/09/2025

Identification échantillon: LSE2508-28048-1

Paramètres analytiq	ues	Résultats	Unités	Méthodes	Normes	LQ	Limites de qualité	Références de qualité
pH sur le terrain	05RS>>	8.0	T-	Electrochimie	NF EN ISO 10523	1.0		#
Conductivité brute à 25°C sur le terrain	05RS>>	644	μS/cm	Méthode à la sonde	NF EN 27888	10		#
Oxygène dissous	05RS>>	9.3	mg/l O2	Méthode LDO	Méthode interne	0.1		#
Taux de saturation en oxygène sur le terrain	05RS>>	98.3	%	Méthode LDO	M_EZ014 Méthode interne M_EZ014	1	30	
Analyses microbiologiques Escherichia coli (2	05RS>>	<15	NPP/100 ml	NPP microplaques	NF EN ISO 9308-3		20000	#
dilutons)								#
Entérocoques (2 dilutions)	05RS>>	15	NPP/100 ml	NPP microplaques	NF EN ISO 7899-1		10000	
Anaérobies sulfito-réducteurs (spores)	05RS>>	<1	UFC/100 ml	Filtration	NF EN 26461-2			#
Salmonella confirmées	05RS>>	Absence	/5 litres	Filtration	NF EN ISO 19250			#
Caractéristiques organoleptique Aspect de l'eau	9 S 05RS>>	0		Analyse qualitative				
Odeur	05RS>>	0 Néant	[.	Méthode qualitative				
Couleur	05RS>>	0	1.	Qualitative				
Turbidité	05RS>>	1.4	NFU	Néphélométrie	NF EN ISO 7027-1	0.10		#
Analyses physicochimiques Analyses physicochimiques de l								
								#
Phosphore total	05RS>>	<0.023	mg/l P2O5	Minéralisation et spectrophotométrie (Ganimède)	Méthode interne M_J053	0.022		
Indice hydrocarbures (C10-C40)	05RS>>	< 0.1	mg/l	GC/FID	NF EN ISO 9377-2	0.1	1.0	#
TA (Titre alcalimétrique)	05RS>>	0.00	° f	Potentiométrie	NF EN ISO 9963-1			#
TAC (Titre alcalimétrique complet)	05RS>>	12.85	° f	Potentiométrie	NF EN ISO 9963-1			#
Matières en suspension	05RS>>	3.2	mg/l	Gravimétrie (filtre Whatman ou Breguer-Krugger)	NF EN 872	2.0		#
totales TH (Titre Hydrotimétrique)	05RS>>	20.37	° f	Calcul à partir de Ca et Mg	Méthode interne M_EM144	0.06		#
Carbone organique total (COT)	05RS>>	0.37	mg/I C	Oxydation par voie humide et IR	NF EN 1484	0.2	10	#
Indice phénol	05RS>>	< 0.010	mg/l	Flux continu (CFA)	NF EN ISO 14402	0.010		#
Tensioactifs anioniques (indice SABM)	05RS>>	< 0.05	mg/I LS	Spectrophotométrie	NF EN 903	0.05		#
Demande Biochimique en Oxygène (DBO5)	05RS>>	< 0.5	mg/l O2	Sans dilution	NF EN 1899-2	0.5		#
Demande Chimique en Oxygène (indice ST-DCO)	05RS>>	< 5	mg/l O2	Spectrophotométrie	ISO 15705	5		#
Fluorures	05RS>>	0.070	mg/l F-	Chromatographie ionique	NF EN ISO 10304-1	0.05	1.5	#
Cyanures totaux (indice cyanure)	05RS>>	< 10	μg/I CN-	Flux continu (CFA)	NF EN ISO 14403-2	10	50	#
Azote Kjeldahl	05RS>>	< 0.5	mg/l N	Distillation	NF EN 25663	0.5		#
Analyse des gaz								
Anhydride carbonique libre	05RS>>	3.4	mg/l CO2	Titrimétrie	Méthode interne	0.5		
Hydrogène sulfuré	05RS>>	0	-	Test olfactif qualitatif	Méthode interne			
Equilibre calcocarbonique								
pH à l'équilibre	05RS>>	7.92	-	Calcul	Méthode Legrand et Poirier			

Rapport d'analyse Page 3 / 11

Edité le : 05/09/2025

Identification échantillon: LSE2508-28048-1

Paramètres ana	lytiques	Résultats	Unités	Méthodes	Normes	LQ	Limites de qualité	Références de qualité
Equilibre calcocarbonique (5 classes)	05RS>>	à I équilibre	·	Calcul	Méthode Legrand et Poirier			
pH avant essai au marbre	05RS>>	7.77	-	Electrochimie		2		#
Température de mesure du pH	05RS>>	19.8	°C					
TAC avant essai au	05RS>>	12.85	° f	Potentiométrie		0.50		#
pH après essai au marbre	05RS>>	7.69	-	Electrochimie		2		#
Température de mesure du pH	05RS>>	19.0	°C					
TAC après essai au marbre	05RS>>	12.35	° f	Potentiométrie		0.50		#
TH avant essai au marbre	05RS>>	20.4	° f	Calcul à partir de Ca et Mg	Méthode interne M EM144	0.5		#
TH apès essai au marbre	05RS>>	20.4	° f	Calcul à partir de Ca et Mg	Méthode interne M_EM144	0.5		#
Cations								
Calcium dissous	05RS>>	62.4	mg/l Ca++	ICP/AES après filtration	NF EN ISO 11885	0.1		#
Magnésium dissous	05RS>>	11.6	mg/l Mg++	ICP/AES après filtration	NF EN ISO 11885	0.05		#
Sodium dissous	05RS>>	4.6	mg/l Na+	ICP/AES après filtration	NF EN ISO 11885	0.2	200	#
Potassium dissous	05RS>>	0.8	mg/l K+	ICP/AES après filtration	NF EN ISO 11885	0.1		#
Ammonium	05RS>>	< 0.05	mg/l NH4+	Spectrophotométrie automatisée	Méthode interne M_J077	0.05	4	#
Anions								
Chlorures	05RS>>	5.2	mg/l Cl-	Chromatographie ionique	NF EN ISO 10304-1	0.1	200	#
Sulfates	05RS>>	83	mg/l SO4	Chromatographie ionique	NF EN ISO 10304-1	0.2	250	#
Nitrates	05RS>>	1.5	mg/l NO3-	Flux continu (CFA)	NF EN ISO 13395	0.5	50	#
Nitrites	05RS>>	< 0.01	mg/l NO2-	Flux continu (CFA)	NF EN ISO 13395	0.01		#
Silicates dissous	05RS>>	4.42	mg/l SiO2	Spectrophotométrie automatisée	Méthode interne M_J069	0.05		#
Somme NO3/50 + NO2/3	05RS>>	0.03	mg/l	Calcul				
Carbonates	05RS>>	0	mg/I CO3	Potentiométrie	NF EN ISO 9963-1	0		#
Bicarbonates	05RS>>	157.0	mg/I HCO3-	Potentiométrie	NF EN ISO 9963-1	6.1		#
Métaux								
Aluminium total	05RS>>	23	μg/l Al	ICP/MS après acidification et décantation	NF EN ISO 17294-1 et NF EN ISO 17294-2	10		#
Arsenic total	05RS>>	< 2	μg/l As	ICP/MS après acidification et décantation	NF EN ISO 17294-1 et NF EN ISO 17294-2	2	100	#
Chrome total	05RS>>	< 5	μg/l Cr	ICP/MS après acidification et décantation	NF EN ISO 17294-1 et NF EN ISO 17294-2	5	50	#
Fer dissous	05RS>>	< 10	μg/l Fe	ICP/MS après filtration	NF EN ISO 17294-1 et NF EN ISO 17294-2	10		#
Manganèse total	05RS>>	< 10	μg/l Mn	ICP/MS après acidification et décantation	NF EN ISO 17294-1 et NF EN ISO 17294-2	10		#
Nickel total	05RS>>	< 5	μg/l Ni	ICP/MS après acidification et décantation	NF EN ISO 17294-1 et NF EN ISO 17294-2	5	20	#
Baryum total	05RS>>	0.034	mg/l Ba	ICP/MS après acidification et décantation	NF EN ISO 17294-1 et NF EN ISO 17294-2	0.010		#
Plomb total	05RS>>	< 2	μg/l Pb	ICP/MS après acidification et décantation	NF EN ISO 17294-1 et NF EN ISO 17294-2	2	50	#
Bore total	05RS>>	0.011	mg/l B	ICP/MS après acidification et décantation	NF EN ISO 17294-1 et NF EN ISO 17294-2	0.010	1.5	#
Cadmium total	05RS>>	< 1	μg/l Cd	ICP/MS après acidification et décantation	NF EN ISO 17294-1 et NF EN ISO 17294-2	1	5	#
Antimoine total	05RS>>	< 1	μg/l Sb	ICP/MS après acidification et décantation	NF EN ISO 17294-1 et NF EN ISO 17294-2	1		#
Sélénium total	05RS>>	< 2	μg/l Se	ICP/MS après acidification et décantation	NF EN ISO 17294-1 et NF EN ISO 17294-2	2	20	#

Rapport d'analyse Page 4 / 11

Edité le : 05/09/2025

Identification échantillon: LSE2508-28048-1

	Résultats	Unités	Méthodes	Normes	LQ	Limites de qualité	Références de qualité
05RS>>	< 0.010	mg/l Cu	ICP/MS après acidification et	NF EN ISO 17294-1 et	0.010		#
05RS>>	< 0.010	mg/l Zn	ICP/MS après acidification et	NF EN ISO 17294-1 et	0.010		#
05RS>>	< 0.01	μg/l Hg	Fluorescence après minéralisation bromure-bromate	Méthode interne M_EM156	0.01	1.0	#
latils							
05RS>>	< 0.10	μg/l	HS/GC/MS	NF EN ISO 10301	0.10		#
05RS>>	< 0.10	μg/l	HS/GC/MS	NF EN ISO 10301	0.10		#
05RS>>	< 0.10	μg/l	HS/GC/MS	NF EN ISO 10301	0.10		#
05RS>>	< 0.10	μg/l	HS/GC/MS	NF EN ISO 10301	0.10		#
05RS>>	<0.10	μg/l	HS/GC/MS	NF EN ISO 10301	0.10		
es polycycliqu	es						
05RS>>	< 0.0005	μg/l	HPLC/UV FLD après extr. SPE	Méthode interne	0.0005		#
05RS>>	< 0.0005	µg/l	HPLC/UV FLD après extr. SPE	M_ET278 Méthode interne	0.0005		#
05RS>>			HPLC/UV FLD après extr. SPE	M_ET278 Méthode interne	0.0001		#
05RS>>			HPLC/UV FLD après extr. SPE	M_ET278 Méthode interne	0.0005		#
05RS>>				M_ET278 Méthode interne	0.0005		#
05RS>>				M_ET278			#
05RS>>	< 0.0001	μg/l	HPLC/UV FLD après extr. SPE	M_ET278 Méthode interne	0.0001	1.0	
			·	M_ET278			
05RS>>	<0.500	μg/l	Calcul		0.500	5	
05RS>>	< 0.050	μg/l	HPIC/MS/MS apres injection directe	Methode interne M_ET116	0.050		
05RS>>	< 0.005	μg/l	HPLC/MS/MS après injection	Méthode interne	0.005	2	#
05RS>>	< 0.020	μg/l	directe HPLC/MS/MS après injection	Méthode interne	0.020	2	#
05RS>>	< 0.005	μg/l	HPLC/MS/MS après injection	Méthode interne	0.005	2	#
05RS>>	< 0.005	μg/l	HPLC/MS/MS après injection	Méthode interne	0.005	2	#
05RS>>	< 0.005	μg/l	HPLC/MS/MS après injection	Méthode interne	0.005	2	#
05RS>>	< 0.005	μg/l	directe HPLC/MS/MS après injection	M_ET109 Méthode interne	0.005	2	#
05RS>>	< 0.005	μg/l	directe HPLC/MS/MS après injection	M_ET109 Méthode interne	0.005	2	#
05RS>>	< 0.020	μg/l	directe HPLC/MS/MS après injection	M_ET109 Méthode interne	0.020	2	#
05RS>>	< 0.005		directe HPLC/MS/MS après injection	M_ET109 Méthode interne	0.005	2	#
05RS>>	< 0.005	μg/I	directe HPLC/MS/MS après injection	M_ET109 Méthode interne	0.005	2	#
	~ 0.000	I ""'	directe	M_ET109	1	-	1
	05RS>>	05RS>> < 0.010 05RS>> < 0.011 05RS>> < 0.011 05RS>> < 0.10 05RS>> < 0.005 05RS>> < 0.0005 05RS>> < 0.0005 05RS>> < 0.0001 05RS>> < 0.0001 05RS>> < 0.0001 05RS>> < 0.0001 05RS>> < 0.0005 05RS>> < 0.005	05RS>> < 0.010 mg/l Zn		OSRS>> < 0.010 mg/l Zn Cip/MS appres additional or decardation No. 17794-2 No. 17794-2		OSRS>

Rapport d'analyse Page 5 / 11

Edité le : 05/09/2025

Identification échantillon: LSE2508-28048-1

Terbumeton déséthyl 0:	15RS>> 15RS>> 15RS>>	Résultats	Unités	Méthodes	Normes	LQ	Limites de qualité	Références de qualité
Terbumeton déséthyl 09	95RS>>		μg/l					
,		0.005		HPLC/MS/MS après injection directe	Méthode interne M ET109	0.005	2	#
Terbuthylazine 0	5RS>>	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	2	#
1		< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	2	#
Terbuthylazine déséthyl 09	5RS>>	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	2	#
Terbuthylazine 2-hydroxy 0: (Hydroxyterbuthylazine) (MT13)	5RS>>	< 0.020	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.020	2	#
Terbutryne 09	5RS>>	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M ET109	0.005	2	#
Propazine 2-hydroxy 09	5RS>>	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	2	#
Atrazine déséthyl 0: 2-hydroxy	15RS>>	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	2	#
	5RS>>	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	2	#
Atrazine déisopropyl 09	5RS>>	< 0.020	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.020	2	#
Atrazine déisopropyl 0: 2-hydroxy	5RS>>	< 0.020	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.020	2	#
' '	15RS>>	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	2	#
Sulcotrione 0	5RS>>	< 0.050	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.050	2	#
Atrazine déséthyl déisopropyl (DEDIA)	5RS>>	< 0.020	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET108	0.020	2	#
Somme de la 09 terbutylazine et de ses	5RS>>	<0.020	μg/l	Calcul		0.020		
métabolites Somme de l'atrazine et de	95RS>>	<0.020	μg/l	Calcul		0.020		
ses métabolites Pesticides organochlorés								
Dalapon 09	15RS>>	< 0.020	μg/l	HPIC/MS/MS après injection	Méthode interne	0.020	2	#
Quintozène 0	5RS>>	< 0.01	μg/l	directe GC/MS/MS après extraction SPE	M_ET116 Méthode interne	0.01	2	#
Dicofol 0	15RS>>	< 0.005	μg/l	GC/MS/MS après extraction SPE	M_ET172 Méthode interne	0.005	2	
HCB (hexachlorobenzène)	5RS>>	< 0.005	μg/l	GC/MS/MS après extraction SPE	M_ET172 Méthode interne	0.005	2	#
HCH alpha	5RS>>	< 0.005	μg/l	GC/MS/MS après extraction SPE	M_ET172 Méthode interne	0.005	2	#
HCH béta 0	5RS>>	< 0.005	μg/l	GC/MS/MS après extraction SPE	M_ET172 Méthode interne	0.005	2	#
HCH delta	15RS>>	< 0.005	μg/l	GC/MS/MS après extraction SPE	M_ET172 Méthode interne	0.005	2	#
Lindane (HCH gamma) 09	5RS>>	< 0.005	μg/l	GC/MS/MS après extraction SPE	M_ET172 Méthode interne	0.005	2	#
l'HCH (sauf HCH epsilon)	95RS>>	< 0.005	μg/l	GC/MS/MS après extraction SPE	M_ET172 Méthode interne M_ET172	0.005	2	
Pesticides organophosphorés								
Azametiphos 0:	15RS>>	< 0.020	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET108	0.020	2	#
Ethoprophos 09	5RS>>	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET108	0.005	2	#
Fosthiazate 0	5RS>>	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET108	0.005	2	#
Azinphos éthyl 09	5RS>>	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	2	#
Chlorpyriphos éthyl 09	15RS>>	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	2	#
Chlorpyriphos méthyl 09	5RS>>	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	2	#
Demeton O+S 05	15RS>>	< 0.010	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.010	2	

Rapport d'analyse Page 6 / 11

Edité le : 05/09/2025

Identification échantillon: LSE2508-28048-1

Paramètres analy	ytiques	Résultats	Unités	Méthodes	Normes	LQ	Limites de qualité	Références de qualité
Diazinon	05RS>>	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M ET172	0.005	2	#
Phosalone	05RS>>	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	2	#
Pyrimiphos méthyl	05RS>>	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	2	#
Pyrazophos	05RS>>	< 0.005	μg/l	GC/MS/MS après extraction SPE	M_E1172 Méthode interne M_ET172	0.005	2	#
Demeton O	05RS>>	< 0.01	μg/l	GC/MS/MS après extraction SPE	Méthode interne	0.01	2	
Demeton S	05RS>>	< 0.01	μg/l	GC/MS/MS après extraction SPE	M_ET172 Méthode interne M_ET172	0.01	2	
Carbamates					M_E1172			
Carbendazime	05RS>>	< 0.005	μg/l	HPLC/MS/MS après injection	Méthode interne	0.005	2	#
Carbétamide	05RS>>	< 0.005	μg/l	directe HPLC/MS/MS après injection	M_ET108 Méthode interne	0.005	2	#
Methomyl	05RS>>	< 0.005	μg/l	directe HPLC/MS/MS après injection	M_ET108 Méthode interne	0.005	2	#
Pirimicarbe	05RS>>	< 0.005	μg/l	directe HPLC/MS/MS après injection	M_ET108 Méthode interne	0.005	2	#
Diethofencarbe	05RS>>	< 0.005	µg/l	directe HPLC/MS/MS après injection	M_ET108 Méthode interne	0.005	2	#
Propamocarbe	05RS>>	< 0.005	µg/l	directe HPLC/MS/MS après injection	M_ET108 Méthode interne	0.005	2	#
Prosulfocarbe	05RS>>	< 0.005	µg/l	directe HPLC/MS/MS après injection	M_ET108 Méthode interne	0.005	2	#
Penoxsulam	05RS>>	< 0.005	µg/l	directe HPLC/MS/MS après injection	M_ET108 Méthode interne	0.005	2	#
Chlorprofam	05RS>>	< 0.005		directe GC/MS/MS après extraction SPE	M_ET108 Méthode interne	0.005	2	#
Dithiocarbamates	00110>>	< 0.003	μg/l	GO/MO/MO apres extraction of E	M_ET172	0.000	_	
MITC (méthylisothiocyanate) Néonicotinoides	05RS>>	< 0.02	μg/l	Purge and trap et GC/MS	Méthode interne	0.02	2	#
Acetamipride	05RS>>	< 0.005	μg/l	HPLC/MS/MS après injection	Méthode interne M ET109	0.005	2	#
Imidaclopride	05RS>>	< 0.005	μg/l	directe HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	2	#
Thiamethoxam	05RS>>	< 0.005	μg/l	HPLC/MS/MS après injection	Méthode interne M_ET108	0.005	2	#
Clothianidine	05RS>>	< 0.005	μg/l	directe HPLC/MS/MS après injection	Méthode interne	0.005	2	#
Amides et chloroacétamides				directe	M_ET108			
Boscalid	05RS>>	< 0.005	μg/l	HPLC/MS/MS après injection	Méthode interne	0.005	2	#
Metalaxyl (dont metalaxyl-M)	05RS>>	< 0.005	μg/l	directe HPLC/MS/MS après injection directe	M_ET108 Méthode interne M_ET109	0.005	2	#
Isoxaben	05RS>>	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	2	#
Flufenacet (flurthiamide)	05RS>>	< 0.005	μg/l	HPLC/MS/MS après injection	Méthode interne	0.005	2	#
Chlorantraniliprole	05RS>>	< 0.005	μg/l	directe HPLC/MS/MS après injection	M_ET109 Méthode interne	0.005	2	#
Fluopicolide	05RS>>	< 0.005	μg/l	directe HPLC/MS/MS après injection	M_ET109 Méthode interne	0.005	2	#
Fenhexamide	05RS>>	< 0.005	μg/l	directe HPLC/MS/MS après injection	M_ET108 Méthode interne	0.005	2	#
Dimetachlore-deschloro (CGA 42443)	05RS>>	< 0.020	μg/l	directe HPLC/MS/MS après injection directe	M_ET108 Méthode interne M_ET108	0.020	2	
Alachlore	05RS>>	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	2	#
Métazachlor	05RS>>	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne	0.005	2	#
Napropamide	05RS>>	< 0.005	μg/l	GC/MS/MS après extraction SPE	M_ET172 Méthode interne	0.005	2	#
Oxadixyl	05RS>>	< 0.005	μg/l	GC/MS/MS après extraction SPE	M_ET172 Méthode interne M_ET172	0.005	2	#

Rapport d'analyse Page 7 / 11

Edité le : 05/09/2025

Identification échantillon: LSE2508-28048-1

Destinataire: MAIRIE Li								
Paramètres analyt	tiques	Résultats	Unités	Méthodes	Normes	LQ	Limites de qualité	Références de qualité
Propyzamide	05RS>>	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	2	#
Tebutam	05RS>>	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	2	#
Acetochlore-ESA (t-sulfonyl acid)	05RS>>	< 0.02	μg/l	HPLC/MS/MS après extr. SPE	Méthode interne M_ET249	0.02	2	#
Metolachlor- ESA (metolachlor ethylsulfonic acid)	05RS>>	< 0.020	μg/l	HPLC/MS/MS après extr. SPE	Méthode interne M_ET249	0.020	2	#
Metolachlor- OXA (metolachlor oxalinic acid)	05RS>>	< 0.020	μg/l	HPLC/MS/MS après extr. SPE	Méthode interne M_ET249	0.020	2	#
Metazachlor-ESA (metazachlor sulfonic acid)	05RS>>	< 0.020	μg/l	HPLC/MS/MS après extr. SPE	Méthode interne M_ET249	0.020	2	#
Metazachlor-OXA (metazachlor oxalic acid)	05RS>>	< 0.020	μg/l	HPLC/MS/MS après extr. SPE	Méthode interne M_ET249	0.020	2	#
Alachlore-ESA	05RS>>	< 0.02	μg/l	HPLC/MS/MS après extr. SPE	Méthode interne M ET249	0.02	2	#
Flufenacet-ESA	05RS>>	< 0.010	μg/l	HPLC/MS/MS après extr. SPE	Méthode interne M_ET249	0.010	2	#
Flufenacet-OXA	05RS>>	< 0.010	μg/l	HPLC/MS/MS après extr. SPE	Méthode interne M_ET249	0.010	2	#
Dimetachlore-OXA	05RS>>	< 0.010	μg/l	HPLC/MS/MS après extr. SPE	Méthode interne M_ET249	0.010	2	#
Dimethenamide-ESA	05RS>>	< 0.010	μg/l	HPLC/MS/MS après extr. SPE	Méthode interne M_ET249	0.010	2	#
Dimethenamide-OXA	05RS>>	< 0.010	μg/l	HPLC/MS/MS après extr. SPE	Méthode interne M_ET249	0.010	2	#
Dimetachlore-ESA (dimetachlore CGA 354742)	05RS>>	< 0.020	μg/l	HPLC/MS/MS après extr. SPE	Méthode interne M_ET249	0.020	2	#
Dimetachlore-CGA 369873	05RS>>	< 0.030	μg/l	HPLC/MS/MS après extr. SPE	Méthode interne M_ET249	0.030	2	
S-metolachlore-NOA 413173	05RS>>	< 0.050	μg/l	HPLC/MS/MS après extr. SPE	Méthode interne M_ET249	0.050	2	#
S-metolachlore-CGA 357704	05RS>>	< 0.100	μg/l	HPLC/MS/MS après extr. SPE	Méthode interne M_ET249	0.100	2	#
S-metolachlore-CGA 368208	05RS>>	< 0.010	μg/l	HPLC/MS/MS après extr. SPE	Méthode interne M_ET249	0.010	2	
Dimethenamide (dont dimethenamide-P)	05RS>>	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	2	#
2,6-dichlorobenzamide	05RS>>	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	2	#
Oxadiargyl	05RS>>	< 0.01	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.01	2	#
Dimetachlore	05RS>>	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	2	#
Ammoniums quaternaires								
Paraquat	05RS>>	< 0.050	μg/l	HPLC/MS/MS injection directe	Méthode interne M_ET055	0.050	2	#
Anilines					M_E1033			
Oryzalin	05RS>>	< 0.020	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.020	2	#
Métolachlor (dont S-metolachlor)	05RS>>	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	2	#
Pendimethaline	05RS>>	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	2	#
Azoles								
Aminotriazole	05RS>>	< 0.050	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET130	0.050	2	#
Hexaconazole	05RS>>	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	2	#
lmazalil	05RS>>	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	2	#

Rapport d'analyse Page 8 / 11

Edité le : 05/09/2025

Identification échantillon: LSE2508-28048-1

Paramètres anal	ytiques	Résultats	Unités	Méthodes	Normes	LQ	Limites de	Références de
		, , , , , , , , , , , , , , , , , , , ,					qualité	qualité
Thiabendazole	05RS>>	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	2	#
Bitertanol	05RS>>	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M ET172	0.005	2	#
Cyproconazole	05RS>>	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	2	#
Difenoconazole	05RS>>	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	2	#
Epoxyconazole	05RS>>	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	2	#
Metconazole	05RS>>	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	2	#
Myclobutanil	05RS>>	< 0.005	µg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	2	#
Penconazole	05RS>>	< 0.005	µg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	2	#
Prochloraze	05RS>>	< 0.01	µg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.01	2	#
Propiconazole	05RS>>	< 0.005	µg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	2	#
Tebuconazole	05RS>>	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	2	#
Benzonitriles					W_L11/2			
Chloridazon-méthyl-desph ényl	05RS>>	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET108	0.005	2	#
Chloridazon-desphényl	05RS>>	< 0.020	µg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET108	0.020	2	#
Aclonifen	05RS>>	< 0.005	µg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	2	#
Chloridazone	05RS>>	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	2	#
Dicarboxymides								
Folpel (Folpet)	05RS>>	< 0.01	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.01	2	
Iprodione	05RS>>	< 0.01	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.01	2	
Procymidone	05RS>>	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	2	#
Phénoxyacides					M_E1172			
2,4-dichlorophénol (métabolite de pesticide)	05RS>>	<0.020	μg/l	GC/MS après extraction LL	Méthode interne M_ET078	0.020	2	
2,4-D	05RS>>	< 0.020	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.020	2	#
2,4-MCPA	05RS>>	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	2	#
MCPP (Mecoprop) total (dont MCPP-P)	05RS>>	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	2	#
Dicamba	05RS>>	< 0.050	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.050	2	#
Triclopyr	05RS>>	< 0.020	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.020	2	#
2,4-DP (dichlorprop total) (dont dichlorprop-P)	05RS>>	< 0.020	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.020	2	#
Fluroxypyr	05RS>>	< 0.020	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.020	2	#
Fluazifop	05RS>>	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	2	#
Phénols								
DNOC (dinitrocrésol)	05RS>>	< 0.020	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.020	2	#
Dinoseb	05RS>>	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	2	#
Dinoterb	05RS>>	< 0.030	µg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.030	2	#
Pentachlorophénol	05RS>>	< 0.030	µg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.030	2	#
				a5010				
					L			

Rapport d'analyse Page 9 / 11

Edité le : 05/09/2025

Identification échantillon: LSE2508-28048-1

	LE POET	-, .						
Paramètres ana	alytiques	Résultats	Unités	Méthodes	Normes	LQ	Limites de qualité	Références de qualité
Pyréthrinoïdes								
Alphaméthrine (alpha cyperméthrine)	05RS>>	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	2	
Bifenthrine	05RS>>	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	2	#
Cyperméthrine	05RS>>	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	2	#
Permethrine	05RS>>	< 0.01	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.01	2	#
Strobilurines								
Pyraclostrobine	05RS>>	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	2	#
Azoxystrobine	05RS>>	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	2	#
Pesticides divers								
Cymoxanil	05RS>>	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET108	0.005	2	
Bentazone	05RS>>	< 0.020	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.020	2	#
Fludioxonil	05RS>>	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	2	#
Quinmerac	05RS>>	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	2	#
AMPA	05RS>>	< 0.020	μg/l	HPIC/MS/MS après injection directe	Méthode interne M_ET116	0.020	2	#
Glyphosate (incluant le sulfosate)	05RS>>	< 0.020	μg/l	HPIC/MS/MS après injection directe	Méthode interne M_ET116	0.020	2	#
Fosetyl	05RS>>	< 0.0185	μg/l	HPIC/MS/MS après injection directe	Méthode interne M ET116	0.0185	2	#
Chlorothalonil R 471811	05RS>>	< 0.020	μg/l	HPIC/MS/MS après injection directe	Méthode interne M_ET116	0.020	2	#
Tebufenozide	05RS>>	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	2	#
Dimethomorphe	05RS>>	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	2	#
Spiroxamine	05RS>>	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	2	#
Cycloxydime	05RS>>	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M ET109	0.005	2	#
Chlorothalonil 4-hydroxy	05RS>>	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	2	#
Clethodim	05RS>>	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	2	#
Imazamox	05RS>>	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET108	0.005	2	#
Thiophanate-méthyle	05RS>>	< 0.020	μg/l	HPLC/MS/MS après injection directe	Méthode interne M ET108	0.020	2	#
Methoxyfenozide	05RS>>	< 0.050	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET108	0.050	2	
Bromacile	05RS>>	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET108	0.005	2	#
Thiophanate-éthyl (thiophanate)	05RS>>	< 0.020	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET108	0.020	2	
N,N-diméthylsulfamide (NDMS)	05RS>>	< 0.100	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET108	0.100	2	
Anthraquinone	05RS>>	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	2	#
Diphénylamine	05RS>>	< 0.050	μg/l	HPLC/MS/MS après extr. SPE	Méthode interne M_ET256	0.050	2	
Pyrimethanil	05RS>>	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	2	#
Chlorothalonil	05RS>>	< 0.01	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.01	2	
Clomazone	05RS>>	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne MET172	0.005	2	#
Chlorothalonil SA (R417888)	05RS>>	< 0.010	μg/l	HPLC/MS/MS après extr. SPE	Méthode interne M_ET249	0.010	2	#

Rapport d'analyse Page 10 / 11

Edité le : 05/09/2025

Identification échantillon: LSE2508-28048-1

Paramètres anal	ytiques	Résultats	Unités	Méthodes	Normes	LQ	Limites de qualité	Références de qualité
Chlorothalonil SYN 507900	05RS>>	< 0.05	μg/l	HPLC/MS/MS après extr. SPE	Méthode interne M_ET249	0.05		
Cyprodinil	05RS>>	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	2	#
Diflufenican (Diflufenicanil)	05RS>>	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	2	#
Ethofumesate	05RS>>	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M ET172	0.005	2	#
Fenpropidine	05RS>>	< 0.01	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.01	2	
Fenpropimorphe	05RS>>	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	2	#
Fipronil	05RS>>	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	2	#
Flurochloridone	05RS>>	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	2	#
Lenacile	05RS>>	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	2	#
Métaldéhyde	05RS>>	< 0.020	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET277	0.020	2	#
Norflurazon	05RS>>	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M ET172	0.005	2	#
Norflurazon désméthyl	05RS>>	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	2	#
Oxadiazon	05RS>>	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	2	#
Piperonil butoxyde	05RS>>	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	2	#
Pyriproxyfen	05RS>>	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	2	
Flonicamid	05RS>>	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	2	#
Quinoclamine	05RS>>	< 0.05	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.05	2	#
Urées substituées					W_L1172			
Chlortoluron (chlorotoluron)	05RS>>	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	2	#
Diuron	05RS>>	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	2	#
Fenuron	05RS>>	< 0.020	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.020	2	#
Isoproturon	05RS>>	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	2	#
Monuron	05RS>>	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	2	#
Thifensulfuron méthyl	05RS>>	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	2	#
Tebuthiuron	05RS>>	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	2	#
Nicosulfuron	05RS>>	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	2	#
Ethidimuron	05RS>>	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	2	#
DCPMU (1-(3,4-dichlorophényl)-3- méthylurée) (cas 3567-62-2)	05RS>>	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	2	#
IPPMU (1-4(isopropylphényl)-3-m éthyl urée (cas 34123-57-4)	05RS>>	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	2	#
Dérivés du phénol Chlorophénols								
3-chlorophénol	05RS>>	<0.05	μg/l	GC/MS après extraction LL	Méthode interne M_ET078	0.05		
4-chlorophénol	05RS>>	<0.05	μg/l	GC/MS après extraction LL	M_E1078 Méthode interne M_ET078	0.05		
2,5-dichlorophénol	05RS>>	<0.020	μg/l	GC/MS après extraction LL	M_E1078 Méthode interne M_ET078	0.020		

Rapport d'analyse Page 11 / 11

Edité le : 05/09/2025

Identification échantillon: LSE2508-28048-1

Destinataire: MAIRIE LE POET

Paramètres analytiques		Résultats	Unités	Méthodes	Normes	LQ	Limites de qualité	Références de qualité	
2,4 + 2,5-dichlorophénol (coélution) Composés divers	05RS>>	< 0.02	µg/l	GC/MS après extraction LL	Méthode interne M_ET078	0.02			#
Divers Hydrazide maléique	05RS>>	< 0.5	μg/l	HPIC/MS/MS après injection directe	Méthode interne M_ET116	0.5			

LQ = limite de quantification pour les paramètres physico-chimiques

05RS>> ANALYSE (RS) RESSOURCE SUPERFICIELLE (ARS05-2025)

Les étapes d'éliminations d'interférents (peroxydes, algues...) ne sont pas réalisées par le laboratoire (option de la norme).

Limites de Qualité : Les limites de qualité sont soit des limites de qualité réglementaires , soit des limites de qualité du client.

Si certains paramètres soumis à des seuils de conformité ne sont pas couverts par l'accréditation alors la déclaration de conformité n'est pas couverte par l'accréditation.

Les résultats sont rendus en prenant en compte les matières en suspension (MES) sauf quand la filtration est indiquée dans les normes analytiques.

Afin de maintenir l'accréditation, le laboratoire peut s'appuyer de manière exceptionnelle sur une étude de stabilité interne pour certains paramètres physico-chimiques.

Julie BURTEY Ingénieure de Laboratoire